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ABSTRACT
With the rapid increase in individuals participating in resistance
training activities, the number of injuries pertaining to these activi-
ties has also grown just as aggressively. Diagnosing the causes of
injuries and discomfort requires a large amount of resources from
highly experienced physiotherapists. In this paper, we propose a
new framework to analyse and visualize movement patterns during
performance of four major compound lifts. The analysis generated
will be used to efficiently determine whether the exercises are being
performed correctly, ensuring anatomy remains within its func-
tional range of motion, in order to prevent strain or discomfort that
may lead to injury.
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1 INTRODUCTION
Due to the growing popularity and accessibility of weight train-
ing, the frequency of injury is increasing. A study conducted by
the Nationwide children’s hospital found that more than 970,000
injuries directly related to weight-training were treated in U.S. hos-
pital emergency departments between 1990 and 2007, with the
frequency of cases increasing by almost 50% during the 18-year
period [6]. The driving force behind this work is the fact that phys-
iotherapists require years of training to be able to diagnose the
causes of injury simply by watching the patient perform an exer-
cise. Receiving professional coaching can be costly, thus a sizable
portion of these individuals are not professionally educated in how
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to perform these exercises optimally or the dangers associated with
poor execution of these exercises.

Bodybuilding, Olympic weightlifting and bodybuilding are the
most widely recognised and commonly practised weightlifting fo-
cused sports. The injuries associated with these sports can be split
into two classifications - acute and chronic. A study conducted by
Calhoon and Fry reported that acute injuries accounted for 59.6%
of injuries with 30.4% being chronic and 10% classified as ’other’
[2]. A 2016 systematic review [1] contains 9 studies looking into
injuries among weightlifters and powerlifters found that on aver-
age weightlifters sustained up to 2.4-3.3 injuries and powerlifters
sustained up to 1.0-4.4 injuries per 1000 hours of training. These
resultant frequencies are relatively low, however this study defined
’injury’ as an "an event that causes an interruption in training or
competitions" [8] which may not be the case with all discomfort.

Motion capture technology has beenwidely appliedwithin sports
science and the healthcare sectors. Shen et al. [7] proposed a vi-
sualization framework for evaluating the skills level of the player
in sports such as boxing. In the healthcare sector, optical MOCAP
data has been used for Diagnosing Musculoskeletal and Neurolog-
ical Disorder [5]. Various motion features, such as relative joint
positions, and feature selections techniques are evaluated on classi-
fying the health issues from the patients’ motion data. McCay et
al. [4] propose a new framework to classify infants with potential
movement difficulty issues by analyzing the body movement. Ho
et al. [3] proposed a new classification framework which takes into
account the reliability of the joint position data captured using
low-cost depth cameras such as Microsoft Kinect.

In this paper, we propose a newmotion analysis and visualization
framework to highlight the potential injuries caused by resistance
training. Specifically, the body movement of the subject is captured
using an inertial motion capture (MOCAP) system. Next, the joint
angles extracted from the skeletal motion data will be compared
with the joint movement range suggested in the literature to analyze
whether the subject is at risk. Finally, the joint(s) which violate(s)
the safe movement range will be highlighted in the visualization
interface.

2 METHODOLOGY
This section explains the design of the proposed framework, from
the use of the inertial motion capture suit to capture the motion
data, to how the system has been designed.

2.1 Data Gathering
This data was collected using the XSens MVN inertial motion cap-
ture system. In particular, 17 sensors are used in the capturing
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body part plane/direction range (in degree)
lumbar spine flexion 0 to 90
lumbar spine extension 0 to 25
lumbar spine lateral movement -25 to 25
shoulder all 0 to 360

hip lateral -20 to 20
hip backward extension 0 to 30
knee sagittal 0 to 150

Table 1: Range of motion of the selected body parts.

process. In this study, 4 types of motions are selected, including
Deadlift, Push-up, Overhead Press, and Squat. To ensure the health
and safety of the subject, the subjects are experienced personal
trainers and a detailed briefing session is conducted before every
single capturing process.

2.2 Anatomical range of motions
As stated in Section ??, previous studies [1, 8] suggested that the
lumbopelvic region (low back), shoulder, hip and knee are the
most susceptible to injuries. In this study, the range of motion in
these body parts are considered to evaluate the healthiness of the
postures in the captured motion. Table 1 summarizes the motion
ranges obtained in previous studies.

2.3 Skeletal Data Visualization and Analysis
The next process is creating an interface in which the user can
observe the data and how it changes during the movement of the
skeleton. To perform the analysis of the data, we consider the
overall anatomical range of motions of musculoskeletal joints that
were outlined in Section 2.2. These values can be considered the
absolute safe range of motion for the average human anatomy.
These values can be used to set thresholds in which each joint
of the skeleton being analysed must remain within. This allows
each joint to be analysed individually and the differences between
anatomies ignored as any joint exceeding this range of motion are
in a dangerous position.

3 IMPLEMENTATION DETAILS AND RESULTS
In this work, we analyze each joint individually. Doing this allows
each plane of motion to be analysed separately, as well as in con-
junction with each other. An example of this would be the knee
joint in comparison to the shoulder complex. As the knee is a hinge
joint, it can only effectively rotate around a single axis, the X-axis,
therefore a single range of motion can be specified for the X-axis
and the other two can be set to minimal range to allow for capture
inaccuracies without disrupting the analysis. This is in contrast
to the shoulder which allows for almost 360-degree rotation upon
all axis, meaning the shoulder only be-comes compromised when
an unfavourable pair of rotations occur. If the shoulder were to
rotate 180 degrees around the Z-axis, as well as 180 degrees around
the Y-axis, the glenohumeral joint would be dislocated. This can
be covered using the absolute range of motion analysis method as
multiple conditions can be specified. If the joint angle violates the
suggested range of motion threshold, the cell of the table in which

the joint value is being displayed turns red, alerting the user of the
system that during that moment of the animation clip, the joint
was in a compromising position.

The interface (see Figure 1) upon start-up contains an assistance
grid orientated upon the XZ plane which aids the user in orien-
tating the camera while observing the skeleton. There will also
be an interactive drop-down interface that will house the exercise
selection options. Upon selecting an exercise from the drop-down
menu, the skeleton loads and begins to perform the motion loaded
from the captured BVH file. Alongside the skeleton, the interface
features a table displaying the names of the 23 joints being anal-
ysed, as well as the corresponding joints X, Y and Z orientation.
The joints are not ordered in skeleton hierarchy, instead they are
ordered in relation to the kinetic chain, from head to feet, followed
by the upper limbs.

(a) Deadlift (b) Squat

Figure 1: Screenshots of the user interface of the proposed
system.

4 CONCLUSION AND DISCUSSIONS
In this work, we propose a unified framework for analyzing and
visualizing potential injuries in resistant training. In the future,
we will capture a wider range of motion to further evaluated the
effectiveness of the proposed framework.
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